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A B S T R A C T  

We consider the wave equation damped with a nonlinear time-dependent 
distributed dissipation. By generalizing a method recently introduced 
to study autonomous systems, we show that the energy of the system 
decays to zero with an explicit and precise decay rate estimate under 
sharp assumptions on the feedback. Then we prove that our estimates are 
optimal for the problem of the one dimensional wave equation damped 
by a nonlinear time-dependent boundary feedback. This extends and 
improves several earlier results of E. Zuazua and M. Nakao, and completes 
strong stability results of P. Pucci and J. Serrin. 

1. I n t r o d u c t i o n  a n d  m a i n  r e s u l t s  

Let gt be a bounded  open domain  of class C 2 in R N . Let p: P~+ • R > ~ be 

a cont inuous funct ion differentiable on ~ x ( - ~ ,  0) and on R+ • (0, c~), such 

tha t  v ~-~ p ( t , v )  is nondecreasing and p(t,O) = 0. We are concerned with the 

decay proper ty  of the solutions of the problem 

u" - A u  + p(t, u') = 0 in ~t • R+,  

(1.1) u = 0 on 0 ~  x R+,  
u(0) = u ~ u'(0) = u 1 

in the class 

1 ~ H 1 ~ ~ , N H ~ ( l ~ ) ) .  (1.2) U e W l 2 o ' c ( ~ . , L 2 ( ~ ) ) N W l ' o ' c  (R+, 0( ) )NLloc(R+ H2 
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As usual, we define the energy of the solution of (1.1) by 

1 [Vu[2)dx" E(t)= s f~ (u'2 + 

1.1 EXPLICIT DECAY RATE ESTIMATES WHEN THE FEEDBACK HAS A LINEAR 

GROWTH AT INFINITY. We assume that there exist a nonincreasing function 

a: R+ ~ R+ of class C 1 on N+ and a strictly increasing and odd function g of 

class C 1 on [-1, 1] such that g(v) = v for all [v[ _> 1 and 

_I(M~ 
(1.3) Vt _> 0, Vv e X, ~(t)g(lvl) ___ Ip(t,v)l <_ g k~(t ) ] '  

where g-1 denotes the inverse function of g. In particular, this implies that  

v ~ p(t, v) has a linear growth at infinity, and that a(0) _< 1. We will consider 

more general situations on the behavior of p at infinity in subsection 1.4 in the 

special case of dimension 2. 

Define 

(1.4) H(y)  = g(y) 
Y 

Note that  H(0) = g'(0). 

We will study the following cases: 

H y p .  1: We assume that  (1.3) is satisfied, and that g(v) = v for all v E R. 

H y p .  2: We assume that (1.3) is satisfied, and that there exists some p > 1 

such that  g(v) = v p on [0, 1]. 

H y p .  3: We assume that (1.3) is satisfied, and that g'(O) = 0 and the function 

H is nondecreasing on [0, 77] for some y > 0. (Note that H(0) = 0.) 

Note that Hyp. 1 is a special case of Hyp. 2 (with p = 1), and Hyp. 2 is a 

special case of Hyp. 3 (with g(v) = v p and p > 1). 

We have the following 

THEOREM 1: Assume that  the function a satisfies 

(1.5) ~(t)  dt = +~. 

1. Under Hyp. 1, there exists a positive constant w such that the energy of  the 

solution u o f  (1.1) decays as: 

(1.6) Yt >_ O, E( t )  ~ E ( 0 ) e x p ( 1 - w  a(T) dT).  
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2. Under Hyp. 2, there exists a positive constant C(E(O) ) depending on E(O) 
in a continuous way such that the energy of the solution u of (1.1) decays as: 

( C(E(O)! 
(1.7) Vt >_ O, S( t)  ~_ \ f~ a(v)dT] 

3. Under Hyp. 3, there exists a positive constant C(E(O)) depending on E(O) 
in a continuous way such that the energy of the solution u of (1.1) decays as: 

- - 1 + f ~  e ( r ) d T  " 

Remarks: 1. Theorem 1 improves in several directions earlier results of M. 

Nakao [25], weakening the assumptions on the feedback, and obtaining in some 

cases better estimates (see Example 1); it completes also the strong stability 

results of P. Pucci and J. Serrin [29]. 

2. Under our assumptions on the feedback, if (u~ 1) E I-I2(f~) Cl H~(f~) x 

I-I~(f~), then (1.1) has a unique strong solution that  satisfies (1.2). 

3. Note that the constant co in (1.6) does not depend on the solution u. This 

fact seems to be related to the linear growth of g at infinity (see subsection 1.4). 

Note also that  the constants C that appear in (1.7) and (1.8) only depend on the 

initial energy, and not on the norm of the initial data in U 2 (f~)N H~ (f~) x H i (f~). 

Thus Theorem 1 allows us to give decay rate estimates for weak solutions. 

4. The estimates provided by Theorem 1 are exactly the same for strong 

solutions of the problem of the wave equation damped by a nonlinear time- 
dependent boundary feedback (it is sufficient to combine the arguments used in 

this case with the ones used for example in [20]). The real problem in this case 

is in fact the problem of existence of weak and strong solutions. Quite recently, 

several authors considered this problem (and next the stabilization part) in the 

case where the feedback is linear, that  means when p(t, u ~) = a(t)u ~, see, e.g., 

S. C. Quiroga de Caldas [31]. But similar results do not seem to be known when 

the feedback is nonlinear. 

5. The hypothesis "H is nondecreasing on some [0, ~/]" is always satisfied on 

usual examples, and if it is not satisfied, it is easy to obtain a slightly less good 

estimate using the fact that g is increasing (see [19]). 

6. Theorem 1 holds true if we consider the problem of the wave equation 

damped by a locally distributed feedback of the type 
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where the function t5 satisfies Hyp. 1, Hyp. 2 or Hyp. 3, and the function 
a: ~ --+ R+ is continuous and satisfies suitable geometrical conditions, for ex- 

ample a(x) _> cr > 0 on a neighborhood of the boundary region 

V(xo) := {x �9 0a ,  (x - xo)-u(x)  > 0} 

(see E. Zuazua [37], M. Nakao [25]), or even weaker geometrical conditions (see 

[19]). The proof in this case is essentially the same (only the technical part 

requires a more refined application of the multiplier method). 

1.2 SOME TYPICAL EXAMPLES. As an  illustration, we apply our results to 

several typical cases. 

Example 1: Consider 
1 

p( t ,  v)  = 

with 0 �9 [0, 1]; then Theorem 1 provides the following estimates: 
a) Under Hyp. 1: 

E(t) <_ E(O)e 1-~'t'-~ if 0 �9 [0, 1), 
e 

E(t) <_ E ( O ) ~  i f 0 = l ;  

note that  if 0 E [0, 1), M. Nakao [Nak4] obtained that the energy decays faster 

than t -m for all m �9 N. 
b) Under Hyp. 2: 

E(t) <_ 
C(E(O)) 

if 0 �9 [0, 1), t2(1-O)/(p-1) 

ifO= 1. 
C(E(O)) 

E(t) <_ 
(ln t)2/(P -1) 

Note that our assumption (1.3) is also weaker than M. Nakao's one, even in the 

cases a) and b), since (1.3) allows us to have p(t, or(t)) = 1, and the assumptions 

of M. Nakao need that p(t, a(t)) -4 0 when t -+ +cr should be satisfied. 

c) Under Hyp. 3: 

�9 (0, 1), g(v) = e -1/vp, for some  p > 0, if Vv 

then 

E(t) <_ C(E(O)) [0, 1), 
(lnt)2/----------- T i f0  E 

E "" C(E(O)) E(t)<_ ( U ) ( l ~ / p  i f O = l .  
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Example  2: we can also consider the case where p(t, v) = a(t)g(v) with 

1 
c~(t) = t(ln t)(ln2 t ) . . .  lnp(t) 

for t large enough and with some p _> 1. Then (1.5) is satisfied and there exists 

c > 0 such that 

j~0 t a(T) = c + lnp+l(t). &- 

Then, for instance, under Hyp. 1: 

E(t)  < E(O)e 1-~lnp+~(~) e 
_ = E ( 0 ) ( l n p ( t ) )  ~ . 

Example  3: Consider that  

e (0,1),  p(t, v) = vp(t) 

with p: N+ --+ 1R+ an increasing function that goes to infinity at infinity (and p 

has suitable behavior at infinity). We need to verify if this case satisfies Hyp. 3; 

we see that  for t > 0, 

VV e (0, 1), p(t, V) ~_ eP(t)(1-1np(t))e-1/v. 

Then we can apply Theorem 1 if 

(1.9) e p(t)O-lnp(t)) dt = +c~. 

This is not true if p(t) goes too fast to infinity at infinity (for example if p(t) = t 
for all t _> 0). A sufficient condition that  ensures us that (1.9) is satisfied is when 

there exist two positive integers q and q~ such that 

1 eP(t)(1-1np(t)) > 
- -  q ' t ( ln t ) . . .  (lnq t) '  

which is equivalent to 

p(t)( lnp(t))  - 1) <__ lnq ~ + lnt  + ln2t + . - .  + lnq+lt; 

this is satisfied for instance if there exists 0 C [0, 1) such that  

Vt >_ 2, p(t) -- (lnt) ~ 

and in this case we obtain that for t large enough 

e(0) 
E(t)  < 

(ln(lnt)) 2" 
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We do not know if this estimate is optimal and what can be said if p(t) = In t for 

t > 2 .  

Next we study the optimality of the estimates we obtained. There are very 

few results of optimality. A. Haraux [8] studied the problem (1.1) in dimension 1 

with a time-independent and polynomial feedback and obtained partial results. 

See also M. Aassila [1] for an optimality result concerning another system. 

Here we generalize some recent results obtained in collaboration with J. Van- 

costenoble (see [34]): 

1.3 OPTIMALITY OF THE PREVIOUS ESTIMATES FOR A ONE DIMENSIONAL 

PROBLEM. We study the problem of the one dimensional wave equation 

damped by a boundary time-dependent nonlinear feedback: 

u" - u~x = 0 in (0, 1) x R+, 
u ( 0 ,  t) = 0 o n  R ~ ,  

(1.10) ux(1, t) +a( t )g (u ' (1 , t ) )  = 0 on R+, 
u ( 0 )  = u ~ u ' ( 0 )  = u 1 

Define V := {u E Hi(0,1)  : u(0) = 0}. Choose (u~ 1) �9 V x L2(0,1). Then 

d'Alembert's formula allows us to write what is exactly the solution of (1.10) 

(see subsection 4.1). In particular we see that if (u~ 1) �9 H2(fl) N V x V, 

then u satisfies (1.2). Note that to our knowledge, general results of existence 

and regularity of strong and weak solutions of the problem of the wave equation 

damped by a nonlinear and time-dependent boundary feedback in dimension N 

seem to be unknown, or unwritten until now; such results exist in the linear case, 

see, e.g., [31]. 

Combining the methods used in [20] to study the autonomous boundary case 

and to prove Theorem 1, we obtain that the energy of u satisfies (1.6) (respectively 

(1.7) or (1.8)) if Hyp. 1 (respectively Hyp. 2 or Hyp. 3) is satisfied. In the 

following we show that  the reverse estimates are also true under some additionnal 

assumptions on the function g and for some initial data, and that the condition 

(1.5) is also necessary: 

THEOREM 2: 1. If f o  a(r) d'r ( q-oo, then (0,0) is no longer a global attractor 

of the trajectories in V x L2(0, 1). 

2. Assume that f o  a(T)dT ---- +C~. Assume also that p satisfies Hyp. 3 and 
lg-1 that the function g is strictly convex on [0, �89 Moreover, define h := ~ on 

[0, �89 and assume that 

(1.11) s ~-+ s(h'(s) - 1) 
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is increasing on [0, ~] for some ~ > O. 
Then, if  the initial conditions (u ~ u 1) are small enough, there exist some 

positive constant c and c' such that the energy of the solution of (1.10) satis- 

fies for t large enough 

Remark: It is easy to check that (1.11) is satisfied when 

Ig(s) l - -Is l  p or Ig ( s ) l - - e  -1/1 1  or I g ( s ) l = e  -~ 

on a neighborhood of zero; then (1.12) gives the optimality of the corresponding 

estimate (1.7) and the ones given in Example 1 and Example 2. More generally, 

we proved in [34] that the estimate (1.8) is optimal for a class of functions g 

including exp( -1 / s  p) and exp( -exp(1 /s ) )  in the automous case (see Proposition 

3.3). We let the reader verify that this property holds true for the solutions of 

(1.10). 

Next we study the influence of behavior of the function v ~ p(t, v) at infinity 

on the decrease of the energy. We study a special case in dimension 2, where 

we prove that the decrease of strong solutions is governed by the behavior of g 

in zero. This seems to be restricted to strong solutions: indeed, we prove, on a 

special case in dimension 1, that,  on the contrary, the behavior of the energy of 

weak solutions can be very dependent on the behavior of v ~-~ p(t, v) at infinity. 

1.4 EXPLICIT DECAY RATE ESTIMATES WHEN THE FEEDBACK IS WEAK AT 

INFINITY. Our goal is to measure the influence of the behavior of v ~-~ p(t, v) 
at infinity on the decrease of the energy. We restrict the study to a special case: 

first we assume that N _< 2, and 

H y p .  4: We assume that p(t, y) = a(t)g(v) where g is a function of class (:1 

such that g'(O) ~ 0 and 

Vly I>_1, Ig(v)l <_ clvl q w i t h q _ > l .  

H y p .  5: We assume that there exists A E (0, +col and a positive constant c 

such that 

(1.13) { Vt >_ O, Vv C ( - A , A ) ,  Ig(v)l < c(l + lv[), 
Vt _> 0,Vv C R \ ( - A , A ) ,  pt(t,v) 2 < cvp(t,v)pv(t,v). 

In particular, this allows us to consider the case where the dissipation is weak 
at infinity, that means 

a(t)g(v) ) 0 when Iv I ~ +co; 
?3 
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for example, we can consider the function 

v 
g ( v )  - 

x/1 + v 2" 

Then generalizing a method introduced in [21], we prove the following 

THEOREM 3: Assume that Hyp. 4, Hyp. 5 and (1.5) are satisfied. Then given a 

solution u that satisfies (1.2), there exists a positive constant w, depending on 

II(u ~ ul)[]H2(~)• such that 

(1.14) Vt >_ O, E(t) <_ E ( 0 ) e x p ( 1 - c o  a(r)dT].~ 

Remarks: 1. Theorem 3 improves earlier results of [25] which proved that, when 

a(t) = t o with 0 E ( -1 ,  1), the energy decays faster than t -m for all m C N, and 

when 0 E { -1 ,  1}, the energy decays faster than (lnt) -m for all m E N. 

2. In fact the weakness of g at infinity has no real effect on the decreasingness 

of the energy of strong solutions: we find the same estimate on the energy as if 

g would satisfy 

~lv] <_ Ig(v)l <_ ~lvl for all v, with c~ > 0. 

The only difference comes from the fact that the decay rate depends on 

II(u~ 
3. In this theorem, even the fact that strong solutions go to zero at infinity 

was unknown in the case where a(t) is not of the type t e. Indeed, P. Pucci and 

J. Serrin considered always the case where g satisfies 

> 0,Vlvl 1, Ig(v)l  lvl. 

4. One could also study the case where g'(O) = 0, combining the methods used 

to prove Theorem 1 and Theorem 3, and study also the problem in higher dimen- 

sions; however, it seems that the weakness of g at infinity has a real influence on 

the decay rate of strong solutions in higher dimensions. See also the results of 

M. Nakao [25] who studied carefully these problems. 

5. We will use Hyp. 5 only to prove that u' is bounded in H 1 (fl) (see subsection 

3.1). (M. Nakao [25] assumed only Hyp. 5 with A = 0 and could not consider 

examples like (1.15).) 

6. One can prove similar estimates under the weaker assumption on the 

feedback: 

al(t)lg(v)] <_ lp(t,v)l <_ ~2(t)lg(v)J, 
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under suitable assumptions on al  and ~2. 

It is a natural question to ask what can be said about weak solutions. In the 

case of (1.1) under Hyp. 4, we have no answer; even strong stability properties 

seem to be unknown. But we have some answers in the case of the problem 

(1.10): their energy decays to zero, but the decrease can be very weak: 

1.5 INFLUENCE OF THE WEAKNESS OF THE FEEDBACK ON WEAK SOLUTIONS. 

Once again we consider the problem (1.10) in the special case where the feedback 

p(t, v) is defined by p(t, v) = a(t) g(v), where a satisfies (1.5) and g is the following 

function: 

Vls I _< 2, g(s) = s/2, 
(1.15) Vls l  _> 2, g(s) = sgn (s)l. 

Motivated by recents works of P. Cannarsa, V. Komornik and P. Loreti [3], we 

also consider the sequence of iterated logarithms 

S Vt > 1, lnl(t) = ln(t), 
(1.16) / Vt > Tv+l, lnp+l(t) = ln(lnv(t)), 

T1 = 1, 
where (Tp)p is defined by Tp+l = e T~. 

The functions lnp are well defined on [Tp, +co[ and go slowly to infinity at 

infinity. 

About the automous case, motivated by several remarks of A. Haraux and 

F. Conrad concerning the same question, we proved that  strong solutions decay 

exponentially to zero, but weak solutions can decay very slowly to zero (see [34]). 

Quite the same results hold in the time-dependent case. More precisely, we have 

the following 

THEOREM 4: Assume that (1.5) is satisfied. 

1. Let g be the function defined by (1.15) and p(t,v) = a(t)g(v).  Given 

(u~ ~ C WI,~(0,1)  x L~176 there exists w that depends on 

l](u ~ vO)[[wl,oo(o,1)• such that the energy of the strong solution of (1.10) 

satisfies 

(1.17) Vt >_ O, E(t)  <_ E(0)exp\l( - w  a(T) d~-/.5 

2. The energy of weak solutions decreases to zero at infinity. 

3. Given p _> 1, there exist (u ~ u 1) �9 V x L2(0, 1), such that the energy of the 

associated solution u of (1.10) satisfies, for t large enough: 

1 
(1.18) E(t)  >_ lnp(f  
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Remarks: 1. This result allows us to measure the gap between the decrease of 

the energy of strong solutions and that of weak solutions. Therefore, when the 

feedback is weak at infinity, the behavior of g at infinity has much effect on the 

decrease of the energy. 

2. We conjecture that the following stronger result is also true: given f :  R+ 

R+ a decreasing function that  goes to zero at infinity, there exist (u ~ v ~ G 

V • L2(0, 1) and e > 0 such that the energy of the associated solution u of (1.10) 

satisfies for t large enough 

E(t) >_ 6f(t). 

3. The proof of (1.18) is based on the construction of explicit special initial 
conditions. 

4. The proof of strong stability is not relied on for the special function g, and 

the result holds true if g is an odd and increasing function of class C 1 on [-1, 1], 

without any restriction on its growth at infinity. 

1.6 RELATION TO LITERATURE. This problem has been widely studied when 

a is constant on ]R+ and when p satisfies Hyp. 2. E. Zuazua [35] proved that  the 

energy of the solution of (1.1) decays exponentially if p = 1 and in a polynomial 

way if p > 1: in this case, there exists some positive constant C such that  

C 
Vt >_ O, E(t) <_ 

(1 + t)21(p-1)" 

See also among others [1, 4, 5, 9, 11, 12, 22, 24, 32]. 

When the function p is time-independent and weaker than any polynomial 

in zero (see, e.g., Example 1 c)), we provided explicit decay rate estimates in 

a recent work [19]. Our result completed a work of I. Lasiecka and D. Tataru 

[15], who studied the problem of the wave equation damped by a nonlinear and 

time-independent boundary feedback and proved that, under weak geometrical 

assumptions, the energy decays faster than the solution S(t) of some associated 

ordinary differential equation S'(t) + q(S(t)) = 0, where the function q is in- 

creasing and depends on p through some algorithm. See also the related works 

[10, 13, 14]. 

However, several mathematical physics models, such as the telegraphic equa- 

tion or the damped Klein-Gordon equation, are really time-dependent, and it is 

interesting to study what happens if, for instance, the effect of the dissipation 

weakens on and on as time goes by. The problem of strong stability for the solu- 

tions of (1.1) have been deeply investigated by P. Pucci and J. Serrin [27, 28, 29, 

30] under very general conditions; they proved that the energy decays to zero if 
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the damping term p(t, u I) satisfies some integral condition that prevents it from 

being either too small (underdamping) or too large (overdamping) when t goes 

to infinity. In particular, under (1.3), the rather natural hypothesis that  ensures 

us that  the energy goes to zero is (1.5): first they proved in [29] (see Corollary 

5.3 p. 202) that  under this additional condition, (0, 0) is a global attractor of the 

trajectories in H 1(~) • L2(~); next they considered the linear problem 

{ u " - A u + t " ( l n t ) ~ u  ' + V ( x ) u = O  i n f l x R + ,  
u = 0 on 0n  x R+, 
U(0) ~-- U 0, ?L/(0) = ~1, 

with some potential V(x) and they provided solutions that  do not go to zero, 

if a = -1  and ]~ < -1 ,  or if a < -1  (in these cases, there exist oscillating 

solutions), or in the symmetric cases: if a = 1 and ~ > 1, or if a > 1 (in these 

cases, there exist solutions that converge to a non-zero state). 

More recently, M. Nakao [25] studied the decay of the strong solutions of (1.1) 

in the special case where 

[p(t,v)[ behaves like t~ p on [-1, 1], 
[p(t,v)l behaves like te[vl q on R \ [ - 1 , 1 ] ,  

where p > 0, 0 < q < q(N), and obtained explicit decay estimates, depending on 

p, q and 0; note that  in the particular case where q = 1, i.e. when v ~+ p(t,v) 
has a linear growth at infinity, the restrictions made on 0 impose that, with our 

notations, (1.5) is always satisfied. 

The paper is organized as follows: Section 2 contains the proof of Theorem 1; 

it is based on the construction of a special weight function r and on the general- 

ization of a technique of partition of the boundary introduced by E. Zuazua (see 
subsections 2.3-2.6). Section 3 contains the proof of Theorem 3 (same ideas). 

Section 4 contains the proof of Theorem 2; it is based on d'Alembert's formula 

and on the study of the behavior of some real sequences. Section 5 contains the 

proof of Theorem 4 (same ideas). 

2. P r o o f  of  T h e o r e m  1 

2.1 A NONLINEAR INTEGRAL INEQUALITY. The proof of Theorem 1 is based 

on the following nonlinear integral inequalities, that we already used in [18] and 

[20]: 
LEMMA 1: Let E: ]~+ ) R+ be a nonincreasing function and r R+ ) ]tCq_ a 

strictly increasing function of class C 1 such that 

(2.1) r  and r >+c~ as t § 
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Assume that there exist q >_ O, q' >_ O, c > 0 and w > 0 such that 

(2.2) vs _> 0, fS ~176 C E(t)l+qr ~- w 1E(S)I+q + (1 + r E(O)qE(S)" 

Then E has the following decay property: if q = 0 = c, then 

(2.3) Vt >_ O, E(t) <_ E(0)el-~r 

i f  q > O, there exists C > 0 such that 

C 
(2.4) Vt >_ O, E(t) <_ E(O) 

(1 + r 

Remarks: 1. Note that if r # 0, it is sufficient to replace r by r - r 
in (2.3) and (2.4). 

2. We will use (2.3) to prove (1.6) and (2.4) to prove (1.7) and (1.8). 

A complete proof can be found in [18]. For the reader's convenience, we give 

a sketch of the proof of Lemma 1: 

Sketch of the proof of Lemma 1: We introduce the nonincreasing function 

f:  [0, +oo[ ~ ~+ defined by 

f(T) = E(r  

Then thanks to the change of variables defined by r we see that f satisfies: 

f t  -t-~ C Vt >_ O, f(T) l+q dtau <__ cf(t) x+q + (1 + t)q ------------~f(O)qf(t)" 

When q' = 0, we apply a result of V. Komornik [11]. We conclude the proof of 

Lemma 1 by induction on the integer part of q'. 

2.2 INEQUALITY GIVEN BY THE MULTIPLIER METHOD. We note that the regu- 

larity of the solution u given by (1.2) is sufficient to justify all the computations 

(where we will omit to write the differential elements) that lead one to prove 

(1.6) (or (1.7), (1.8)). 

First we need an expression for E': 

LEMMA 2: The function E: F~+ > R+ is nonincreasing, locally absolutely 
continuous and 

(2.5) E' (t) = - / ~  u' p(t, u') dx. 
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Proof of  Lemma 2: This is a well known result. 

o: j; io <,u,,_.. +.,,,.,>>: ~ i <. +,..,.~: +/" S <.,,,u,>. | 
The proof of Theorem 1 is based on the following inequality: 

LEMMA 3: Set q >_ O. There exists a positive constant c such that for all S < T 

(2.6) i s  E(t)l+qr <- cE(S)l+q +c  E(t)qr u '2 +p( t ,u ' )2dxd t .  

Remark: This inequality is classical when r = t for all t >_ 0. The function r 

will be chosen later (r will be closely related to g and a). The proof is the same 

as in the autonomous case [19]. 

Proof of Lemma 3: We integrate by parts the expression 

~s T # (u" - + p(t, u')) dt, 
I "  

0 = Eqr ' u Au dx 
Ja 

and we get that  

.i;.,+.,=ij.+,So<.+,~u,. 
io ~'/." -+"'>Io = -  [Eqr ' uu ~ + (qE 'Eq- l r  ' + uu r 

s 

+ / ;  Eqr S 2u'2 - u p(t, u'). 

Since E is nonincreasing and r is a bounded nonnegative function on JR+ (and 

we denote by A its maximum), we easily estimate the right-hand side terms of 

(2.7): 

./,>~ / <. <~/,>,+~ 
~q. .  1++.+/.u <.~E ~<,>.~,>q,, 

+ c E( t ) l+q(-r  dt 

<_cAE(S) l+q. 
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At last we see that,  given e > 0, we have 

Then the estimate (2.6) follows choosing e small enough, l 

2.3 PROOF OF (1.6). We consider the case where 

1 
Vt e R, Vv e R, ,~(t)lv I < Ip(t,v) l  < ----~lvl . 

Then we have 

(2.8) 

Isr. J. Math. 

2 # , #. 

Vt ~ R, Vx e ~, u'2 + p(t,u') 2 <_ ~(t) u p(t,u ). 

Therefore we deduce from Lemma 3 (applied with q = 0) that 

/; r s,, 1 
(2.9) E r  dt <_ CE(S) + 2C Tr 

aS ~(t) u ' p(x,u 

Define 

(2.10) r  = 

It is clear that r is a concave nondecreasing function of class C ~ on R+. The 

hypothesis (1.5) ensures that 

(2.11) r > +co when t ~ +oc. 

Then we deduce from (2.9) that 

/; (2.12) E(t) r dt <_ CE(S) + 2C u'p(t, u') dx dt < 3CE(S). 

Then the Gronwall type inequality (2.3) gives us that 

(2.13) E(t) <_ E(O)e 1-r | 
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2.4 PROOF OF (1.7). Now we assume that there exists p > 1 such that  (1.3) 

is satisfied with g(v) = v p on [0, 1]. Define the function r by (2.10). We apply 

Lemma 3 with q := (p - 1)/2. 

We need to estimate 

} : E q r  

For t _> O, consider 

a t~,. := {~ c ~, lu'l ___ ~(t)} 

First we note that  for every t _> 0, 

and ~t~,. := {x e ~, lu'l > 1}, 

and flt~,. :__ {x c ~, Ir > ~(t)}. 

~,,, u ~2,,, = ~ = ~tl.o u ~, , .  

Next we deduce from Hyp. 2 that for every t _> 0, 

1,~, < u p ( t ,  u')  , 

i f x  E fit then u '2 1 , ~,~, < - ~ u  p(t, u'), 

(~-~t) ' )~/(p+l), 
if x C fit then p(t, u') 2 < u p(t, u') 1,p' 

i f x E ~ t  t t henp( t , u ' )  2 <  1 , . ,. 2,., _ a - ~ u  p(t, u ). 
Hence, using Jensen's inequality, we get that 

(2.14) E q r u '2 + p(t, dx dt 

~_2~Tgqct~lutp(t, ttt) dxdt-1-2~sTgqct~(ltttp(t, ut))2/(p+l)dxdt 

_< cE(S) '+ ' ,  + 2 ,~/~ ~',,r ( - "~ '  ) - ; - - ,  ~/('+~> ,~t. 

Set ~ > 0; thanks to Young's inequality and to our definitions of q and r we 

obtain 

(2.15) E q r u '2 + p(t, dx dt 

f S  T 4 1 
<cE(S)I+q + 2P : l e ( ' + 1 ) / ( ' - 1 ) -  1 El+qr dt + P-- 1E(P+I)/2 
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Therefore, choosing ~ > 0 small enough, we deduce from Lemma 3 and (2.15) 

that 

s T E  l+q r dt <_ 2CE(S),  

and the Gronwall type inequality given by Lemma 1 (applied with c = 0) ensures 

us that 
C 

E(t) <_ r ). II 

Now we assume that Hyp. 3 is satisfied with some strictly increasing odd 

function g of class C 1. We generalize the method we used to study the time- 

independent problem (see [19]). The key point is to construct a suitable weight 

function r and convenient, partitions of ~. In the following, we assume that the 

function H is nondecreasing on [0, 1] (if H is nondecreasing only on [0, r/] for some 

7; > 0, it is easy to adapt the proof, see [20] subsection 4.3). 

2.5  THE DEFINITION AND THE PROPERTIES OF THE WEIGHT FUNCTION USEFUL 

TO PROVE (1.8). When the feedback law depends on time, we need to generalize 

the construction used in [19]. Assume that the function p satisfies Hyp. 3. Define 

f, 1 (2.16) Vt _> 1, r  :-- 1 + H(1/T-------) dT. 

Then ~): [1, +oo[ > [1, +oo[ is a strictly increasing and convex function of class 
i:2 and it is clear that 

r  ----+ +oo and r  ---+ +oo when t ----4 +c~. 

Now define as in the study of the autonomous case 

Vt ~ 1, $ ( t ) : =  r  (2.17) 

and 

j(1 t (2.18) Vt_> 1, r 1 6 2  a(r )dr ) .  

Note that this definition generalizes the weight function we used in [19]. The 

function r has the following properties: 

LEMMA 4: The function r [1, +oo[----~ [1, +oo[ defined by (2.18) is concave, of 
class C 2 and satisfies 

(2.19) r ~ +oo when t > +c~, 

(2.20) r -----4 0 when t > +c~, 

(2.21) Vt_>l,  r  
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Moreover, we have for t large enough 

(2.22) 
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Thus we get that  for t large enough 

1 1 

Note that  as a consequence of (2.21), we see that there exists k > 0 such that  

(2.23) Vt > O, r < ka(t). 

| 

1 1 ) 
r 1 + f~-a(T)d~" 

o 

All these properties are easy to verify. Denote 

S(t) = 1 + a(T) dT. 

Since a is a positive function of class C l, r is a strictly increasing function of 

class C 2 and 

r  = r  

The decrease of a implies that  r is concave. Moreover, we note that  

/1 r ~ +ee  when t ~ +ee  because a ( r )  dr  = +Oe, 

r ~ 0 when t ~ +ee  because r - -~  0. 

Next we remark that  r satisfies (2.21): indeed 

r162 1 -a( t )  1 ( 1 ) 
r162 O'(r - a ( t ) H  r  

At last we verify that r satisfies (2.22): for t large enough we have 

t - 1  t _ 1 
(b(t) < 1 + H(1/t---~ <- H(1/t~ g(1/t)' 

provided that  H(1/t) < 1. Therefore 

- 1 
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2.6 PROOF OF (1.8). We estimate the terms of the right-hand side of (2.6) in 
order to apply the results of Lemma h we choose q = 1 and study first 

/ : E r  

We have the following estimate: 

LEMMA 5: There exists C > 0 such that 

T 

(2.24) V I < S < T ,  / s  EC' fau '2dxdt<CE(S)2+cE(S)  
- - r  

Proof of Lemma 5: Introduce 

1 
(2.25) Vt~_> 1, h(t) = r 

h is a decreasing positive function and satisfies 

h ( 1 ) = l  and h(t) >0 

Define for every t > 1 

(2.26) 

(2.27) 

(2.28) 

as t ---+ +oo. 

~t3,. :-- {x �9 ~ :  Ir -< h(t)}, 
~t  {x  �9 fl : 4,. := h(t) < Ir < h(1)},  

5,. := Ir > h(1)}. 

Fix S > 1; first we look at the part on f~t,,. We deduce from (1.3) that 

Thus we have 

(2.29) 

1 
vt __ i,Vlvl > 1, v ~ <_ - - ~ . , v p ( t , v ) .  a(r) 

S T f T E r u' p(t, u') dx dt Er ~ ~ u'2 dx dt <- -- fa~ ~ 
, J s  a , 

T 

<_ k /s E(-E')dt  <_ kE(S) 2. 

Next we look at the part on ~ta,v. Set t _> 1 and x 6 ~t,v: then lu'(x,t)l _< 1. 
Thanks to the definition of h, to (2.21) and to Hyp. 2, we have 

r  '2 = G(t)H(h(t))u '2 < a(t)H(u')u '2 < u' p(t, u'). 
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Therefore 

(2.30) 
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Ss Er u'2 dxdt <_ E u'p(t ,u ' )dxdt  E(S)  2. < 
~,~ ~,~ 
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thus 

The proof of  Lemma 6 follows from these three estimates. I 

i Ir r < r ~_ Ir 

At last we look at the part  on 3,v. 

_< ICt lE(S)  r  ~ dt = I ~ I E ( S )  r  dt <_ I~1 t--(S)" 

We add (2.29)-(2.31) to conclude. I 

Next we prove in the same way the following 

LEMMA 6: There exists C > 0 such that 

(2.32) Vl < S < T, Er p(t, dx dt < C E(S)  2 + C E(S) 
- - r  

Check of the proof of Lemma 6: We use the same strategy: define for every 

t >  To 

(2.33) at3,p := {x e a :  g- l ( l~ ' l /~( t ) )  _ h(t)}, 

(2.34) a t , .  := {x �9 a :  h(t) < g- l (141/~( t ) )  ___ 1), 

(2.35) a t , .  := {x �9 a :  g- l ( l~ ' l /~( t ) )  > 1}. 

Then it is easy to verify that  

i f x  �9 12 t then  p(t,u#) 2 < g-l(lu'lla(t))ip(t,u')l = lu'lla(t)ip(t,u')l; 5,p~ 

if x �9 l-I t then p(t, u') 2 < h(t) 2. 3,p~ 

At last we see that  if x �9 gl~,p, then 

r  . . r  - ~ / l u ' l ~  = I r  
a(t) - H(h(t)) <_ a t g  t - ~ ) )  g-'(lr 
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Using Lemma 3, Lemma 5 and Lemma 6, we get that 

~ ,~E(S) 
(2.36) VS _> 1, E(t)  2 r dt <_ CE(S) 2 + ~ ~ ) .  

Then we use Lemma 1 and the estimate (2.22) to conclude that there exist C' 

and T1 _> 1 such that 

Vt > T1, E(t) < r  < C' g -1 1 
- - - l + j , a : )  

Thus the proof of Theorem 1 is achieved. | 

3. P r o o f  o f  T h e o r e m  3 

We generalize the method introduced in [21] to study the autonomous case. We 

consider only the case of the feedbacks of the form p(t, v) = a(t)g(v), and where 

is a bounded domain of R 2 (the proof is similar and simpler when ~ C R). 

3.1 BOUND ON u' IN H 1 (~) • L 2(~). Under Hyp. 5, we prove that u' is bounded 

in H1(~2). By deriving (1.1) with respect to time, we see that v := u' is a solution 

of the following problem: 

v" - Av  + , , '(t)gO,) + ~ ( t ) , ' ( v ) r  = o 
v = O  

~(o)  = ~ ,  v'(o)  = : ,~o  + ( , ( o ) p ( ~ ) .  

Then we compute 

thus 

in f~ x R+, 
on Of~ x ~,+, 

O= ~o T / a  v ' ( v " -  Av + a'(t)g(v) +a(t)g'(v)v')dxdt 

= ~ v '2+[Vvl  2dx + a'(t)v'g(v)+a(t)g'(v)v'2dxdt, 
o 

E(v)(T) - E(v)(O) = - a'(t)v'g(v) + a(t)g'(v)v '2 

<_c 1 + v t2 + v 2 
I<A 

___c(lal + 2E(~)(0) ) (~(0)  - ~(T))  
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+2cfoT--a'E(v)+C'foT/vp(t,v) 

1" <_co + 2c (-a'(t))E(v)(t) dt, 

where co is a constant that  depends on a(0) and E(u)(O). We apply Gronwall's 

lemma to deduce that  

E(v)(T) <- (E(v)(0) + co)e~Cfo r -a'(t)dt <_ (E(v)(0) + co)e 2c~(~ | 

In the following, we denote 

(3.1) C(u~ 1) := sup {llu'llHa(a),t e 1~-}. 

3.2 INEQUALITY GIVEN BY THE MULTIPLIER METHOD. Set R0 > 0 and define 

(3.2) vt __ 0, r = N ~0-) e~-. 

Ro will be chosen in the next subsection; it will depend on the norm of the initial 

conditions (u ~ u 1) in H2(a) x Hl(f~). We have the following 

LEMMA 7: Assume that Hyp. 4 is satisfied. There exists a positive constant 
c > 0 that depends on ft and on E(0) such that the solution u of (1.1) satisfies 

(3.3) / T  E(t)r (t) dt << cE( S) + c / ;  r (t) / u'2 dx dt. 

Proof of Lemma 7". We have already seen in (2.7) that 

(3.4) ~ Er dt <_ cE(S) + r 2u '2 - u  p(t, u') dx dt. 

It remains to estimate the last term of (3.4): we have the following 

LEMMA 8: There exists c > 0 such that for ali ~ > 0 

( 3 . 5 ) - ~ T r 1 6 2 1 6 2  

Note that  (3.3) follows from (3.4) and from (3.5) choosing r small enough. 

Proof of Lemma 8: There exists )~1 > 0 such that 

Ig(Y)l <- A'IYl if lYl <-- 1. 
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Set ~ > 0; 

~u 2 2~g(u')2 / ; r 1 6 2  ~ + 

-~ Er + r - - u  '2. 
- 2 ~  

Next we study the part on lu'l > h since ~ is a bounded domain of R 2, 

gl (•)  C Lq+l(~), 

for all q > 1. Thus 

Then 

IlullL.+,(a) < ~llull~,ta) < cv~. 

i s  T r  u p(t, u ~) dx dt 

___./j +,(So I.(u,)l(~+i)iq) ~/(~+') 
" " J l u ' l > l  

q/(q+l) 
< c r  1/2 

\ 0" ! 

S c7/q+l E(q+l)12r + 71 (q+l)l----~ Ro 

< c~q+lE(O) (q-l)~2 fT C 
- JS Er 4- ?l(q+l)/q.E(S), 

provided that R0 >_ 1. We get (3.5) choosing ~ small enough. 

3.3 PROOF OF THEOREM 3. Lemma 7 gives that 

/; /;Io Er dt <_ cE(S) + c r u '2 dx dt. 

It remains to estimate in a suitable way 

and then we will apply Lemma 1. 

II 
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For each t >_ 0 define 

(3.6) 

(3.7) 

First we study 

T I M E - D E P E N D E N T  DISSIPATIVE SYSTEMS 

a~ := {x �9 a :  I"'1 < Ro}, 

a~ := {x �9 a :  Ro < Ir 

/ ; r  t u '2 dx dt, 
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thus 

(3.11) f~ C' t -~0 u'2 dx <_ ~oollU IlHl(a)E(t) < C(u~  

Hence we deduce from (3.5) 

/." /.'io ='o/" Er dt < cE(S)  + c r u '2 dx dt + -~ooC(U , u 1) E( t )r  dt. 

with the help of the following well-known interpolation result: 

LEMMA 9 (Gagliardo-Nirenberg): Let 1 < r < p <_ oo, 1 < q < p and m > O. 

Then the inequality 

(3.8) II.llp -< c'llD'~vll~ ~ for v e W "~'q n L" 

holds with c' > 0 and 

(3.9) 0 =  r -  N + - r -  

i f0  < 0 < 1 ( 0  < 0 < 1 i f p  = oo and mq = N) .  (Here [[. lip denotes the usual 
norm of LP(~).) 

When N = 2, it follows that there exists a positive constant c that depends on 

such that 

t 1/3 2/3 
(3.10) Vv e Hl(f~), II.llL~<~) -- ~ IIvlIH:(~)II~IIL~<~) 
(we used (3.8) w i t h p = 3 ,  m = l , q = r = 2 ,  N = 2 a n d 0 =  �89 

Note that 

/o /o 1 , .  ut2 dx < 1 ]u'l 3 dx < ~ l l u  IIL~(~). - ~  ~ - 

Applying (3.10) to v -- u', we obtain that 

t 3 , , , 2 [lu IIL.(~) < c Hu IlH:(~)llu IIL:(~) --- c ' l lu ' l lm(~)E(t) ,  
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Choose Ro > 0 such that 

(3.12) 

Thus we get 

P. MARTINEZ 

cc' o 1 I ,u ) <_ 3 

Isr. J. Math. 

1/ST i s T r  Er dt <_ cE(S) + c u '2 dx dr. 

The last term is easy to estimate since g~(0) # 0; we can choose a > 0 such 

that ]g(Y)I > c~IyI if lyI < Ro. Thus we have 

u'p(t,u') dxdt < (E(S)-E(T)) .  
J s  J ~  - ~ ~ - 

Finally we get 

(3.i4) ~ E(t)r dt <_ cE(S) + E(S) = E(S). 

Letting T go to infinity, and applying part 1 of Lemma 1, we get that 

(3.15) E(t) <_ E(O)e 1-~+(t). 

The proof of Theorem 3 is completed. I 

4.  P r o o f  o f  T h e o r e m  2 

In this section we consider the one dimensional wave equation damped by the 
boundary nonlinear feedback a(t)g(u'). 

First we show how to apply d'Alembert's formula to write explicitly the solution 
of (1.10): 

4.1 GENERAL STUDY OF THE SOLUTIONS. Set Ao E L~176 1). Set s E (-1, 1) 
and consider the sequence (A, (s)), defined by induction by the following formula: 

(4.1) An+l(s)+An(s)+a(s+2n+l)g(An+l(s)-An(s))  =0.  

In order to simplify, we introduce the notation, 

VsE(-1 ,1 ) ,  an(s):=a(s+2n+l) .  

Assume for a while that the sequence (An), is well defined, and consider the 
absolutely continuous function f: (-1, +oo) ) N such that 

VnEN, V s e ( 2 n - l , 2 n + l ) ,  f ' ( s ) = A , ( s - 2 n ) .  
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Note that (4.1) implies that 

(4.2) f f ( t + l ) + f ' ( t - 1 ) = - a ( t ) g ( f ' ( t + l ) - f ' ( t - 1 ) )  a.e. t .  

Next define the functions u ~ u 1 and u by 

vx ~ (0,1), u~ := Ao(s) dz, 

Vx a (0, 1), ul(x)  := Ao(x) - A o ( - x ) ,  

v(~, t) e (o, 1) • (o, ~ ) ,  ~(x, t) = / ( t  + x) - f ( t  - ~). 

We remark that u is the solution of the problem (1.10) with the initial conditions 

(u ~ ul). (Relation (4.2) gives that u~(1, t) = - a ( t )  g(u~(1, t)).) (Reciprocally, 

given (u ~ u 1) 6 V x L2(0, 1), it is easy to construct A0 6 L2(0, 1) such that the 

previous relations are satisfied.) We note also that the energy of u is given by 

lfo  (4.3) Vt >_ O, Eu(2n) - ~ (u~(x, 2n)+u2t (x ,2n) )dx  

f_' = f ' ( s  + 2n) 2 ds = An(s) 2 ds. 
1 1 

When p satisfies Hyp. 3, the proof leading to Theorem 1 can still be applied 

for the problem (1.10) and gives an upper estimate on the energy. We carefully 

study (4.1) to obtain a lower bound on the energy. 

We will use the following properties: 

LEMMA 10: Assume that p satisfies Hyp. 3. Given s 6 ( -1 ,1 ) ,  the sequence 

(An (s) )n is well defined almost everywhere, and the sequence (an (s) := (}An (s)])n 
is nonincreasing and converges to zero. Moreover, if I[Ao][oo is small enough, the 

sequence (an(s))  satisfies 

(4.4) Vn > 0, an+l(s) > an(S) - -~ . (s )a(2a. (s ) ) .  

Proof  o f  Lemma 10: Set s 6 ( -1 ,  1) such that Ao(s) 6 R. Set n _> 0 and assume 

that An(s) is well defined. In order to prove that An+l(s) is well defined, we 
introduce the strictly increasing function 

r y 6 R ~ y + a , ( s )g (y  - An(s)); 

Cn is continuous on R, Cn(Y) " ~ +C~ when y ~ +cx~ and r  ----+ -cx~ if 

y . ~ -c~ .  Thus there exists one and only one point Yn+l such that Ca(Yn+l) = 

- A n ( s ) .  By definition, An+l(S) := yn+l. 
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Multiplying (4.1) by An+l(S)  - An(s) ,  we get tha t  

An+l(S) 2 - An(s )  2 = - a n ( S ) g ( A n + z ( s )  - An ( s ) ) (An+z ( s )  - An(s ) )  <_ O, 

thus the sequence (IAn (s)l)n is nonincreasing. Denote 

g(s) := lim n_~+oolAn(s)l; 

we deduce from (4.3) and from Theorem 1 tha t  

'i g(s)U = E( t )  = O. ds lim 
t-++co 

Thus g = 0. 

At last we verify (4.4): set s �9 ( - 1 ,  1) and assume for example tha t  An(s )  > O. 

We consider again the strictly increasing function Cn- Since gt(0) = 0, there  

exists # > 0 such tha t  the function y ~ y - a (0 )g(2y)  is strictly increasing on 

[0, #], so in part icular  

vy �9 ~], a(o)9(2v) < y. 

In the following we assume that  IIA01]oo <_ #. Then  

Cn(0) = a , ~ ( s ) g ( - A n ( s ) )  >_ a ( O ) g ( - A n ( s ) )  > - A n ( s )  = Cn(An+x(S)). 

Therefore  An+z(s)  < 0. So the sign of the sequence (An)n is al ternat ing and, 

since g is odd, we get from (4.1) tha t  

thus 

Vn _~ 0, IAn+l(S)l- IAn(s)l = -an(s)g(IAn+l(S)l + IAn(s ) l ) ,  

Vn > 0, -n+l(s)  = ~ , (s )  - an(s)g(~n+l(s)  + - n ( s ) )  

> ~n(s) - a n ( s ) g ( 2 - n ( s ) )  > 0. I 

4.2 OPTIMALITY OF THE ESTIMATES IF fO  a(T)dT = +co .  Now we assume 

tha t  y ~4 y(h ' (y)  - 1) is nondecreasing on [0,77] for some 7/ > 0. Set A0 E 

L ~  such tha t  IIA011oo < #. The functions Cn: Y ~-+ Y -  an ( s )g (2y )  are 

nondecreasing on [0, #]. Set s �9 ( - 1 ,  1) and define for n >_ 0 

n 

s ~ ( s / : =  ~ akIs/. 
k=O 
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The decrease of a implies that  

f2n+2 f2n+3+s << 
�9 12 Jl~s 

[2n+l+s [2n~-2 
< 2Sn(S) < 2a0(s) + a(T)dT <_ 2a(0) + a(~')dT, 

J1J~.s dO 

thus the sequence (Sn)n goes uniformly to infinity on (-1,  1). 

We introduce h = !g-~ Set nl E N large enough, and let (An(s))n>l be the 2 

decreasing sequence (convergent to 0) defined by 

Yn > 1, h'(An(s)) : 721 -~- Sn-l(8). 

Note that  for all n _> 1, 

. . . . .  > 0 when n > +co; 
2(Sn-l(S) + nl 

indeed, 

In particular, 

Since (4.4) and the definition of # imply that a l  cannot be equal to 0 on ( -1 ,  1), 

there exist a positive constant 7 and a measurable subset J of (-1,  1) such that  

al(s)  >_ ~ on J.  Choose nl e N large enough such that  h(Al(S)) < ~ and 
Az(s) <: q on J.  We prove by induction that 

Vn > 1,Vs �9 J, c~n(s) > h(An(s)). 

Set s �9 J. In order to simplify the expressions, we omit writing s in the following 

computations. Assume c~n >_ h(An). Then 

~,+~ > ~ ,  - an g(2~n) > Cn(~,) > Cn(h(A,)) = h(An) - ~nA,. 

On the other hand, there exists # ,  �9 An[ such that 

h(An) - h(An+l) -- (An - An+l)h'(ttn) _> ( A n  - An+l)h'(An). 

It remains to check that 

(An - > a.An 
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to complete the induction argument. Since the function y ~ y(h ' (y)  - 1) is 

nondecreasing on [0, ~?], we see that for n large enough 

An(h'(An) - an) - An+lh'(An) = An(h'(An) - an) - An+l(h'(An+l) - a . )  

= A.(h'(An) - 1) - An+l(h'(An+l) - 1) + (1 - a.)(An - An+l) >_ 0. 

Hence 

(An - * .+ , )h ' (~ . )  > anon, 

and so an+l > h(An+l). 
Then we easily get a lower bound on the energy: we have 

E ( 2 n / =  ~n(8)~as_> ~.(s/~ds___ h(an(s))~ds 
1 

> [j[ [ l (g , )_ l  ( 1 ) ] 2 ,  

- 2a(0) + 2nl + f : n  a(T)d7  

where IJ[ denotes the Lebesgue measure of J. | 

4.3 T H E  ENERGY DOES NOT DECAY TO ZERO IF fF (7(7") dT < +co. Let 131 b e  

a positive real number small enough such that/31 _< a l ( s )  on J and 

/31 -- g(2/31) a(T) d T >  O. 

We use the same kind of reasoning. For s E J,  consider the following sequence 

defined by induction: 

/31( ---- /31, 

/3n+l(s) =/3n(S) - an(s)g(2/3n(s)).  

First we see that  for all s C J,  

vn >_ 1, /3.(s) ___ an(s). 

But since the sequence (/3~(s))n is nonincreasing, it converges to some non- 

negative value g(s). We claim that g(s) is bounded from below by a positive 

constant on J: indeed, we have for n _> 1 

/3.(8) - /3 .+1(s)  = a.(s)g(2/3.(s))  < a.(8)9(2/31(s)), 

thus 
-t-OO 

/31 - t(s) < ~ ( 2 / 3 1 ) ~  ak(s), 
k = l  
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hence 

-boo f0+o  o 
~(s) _> fll - g(2~1) E ak(s) >_/~1 - g(2~1) or(r) dr  > 0. 

k=l 

Thus 

E~(2n) = ~ ~n(s) ~ es ___ ~,~(s) 2 as 

_> f j  ~(s)) 2 ds>_ I J I ( B I -  g(2/~1)fo+~176 2 

5. P r o o f  of  T h e o r e m  4 

We keep the same notations as in Section 7. Thanks to the special choice of the 
function p, it is easy to solve (4.1), and we deduce that 

if IAn(s)l > ~+~n(8) then IAn+l(s)l = I A . ( s ) l -  ~.(s),  

2--On(8) if IA~(s)I < 2+~.(8) then LA,,+~(s)I = kn(s)lA,~(s)l with k,,(s):= 2+~(~) 

Set s E (0, 1) and let p(s) be the smallest nonnegative integer such that 

2 + ap(~)(~) 
IAo(s)l <_ Sp(s)--I "~- 

2 

1 (2 + ao(S))). We deduce easily that (p(s) = 0 if [Ao(s)[ _< 

(5.1) if q _< p(s), then IAq(s)[ -- IAo(s)[ - Sq_l(s), 
q-1 

(5.2) ifq >_ p(s) + 1, then IAq(s)l = IAp(s)(S)l 1-I kj(s). 
j=p(8) 

5.1 DECAY OF STRONG SOLUTIONS. Set (u ~ u 1) E WI'~ 1) x L~176 1), then 

Ao E L~176 1). Hence there exists Po large enough such that 

f 
2po 

llAoll~ <_ a(r) dT, 
,/2 

so for all s �9 ( -1 ,  1) we have 

IApo(s)l ~ llAollo~ ~ Spo-l(s) § 

Hence 

Vn >_ po + 1, Vs E ( -1 ,  1), 

2 -[- O'po(s ) 

n--1 n--1 

IA~(s)l = [Apo(S)l I I  kj(s) < [IAoll~ 1-[ kj(s). 
j =Po j =Po 
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Using the fact that a(0) < 1 and that 

Vv�9 11, In ~ _<-v, 

we deduce that 

/__1 2 j (1  ~ 1  
Vn > Po + 1, Eu(2n) = An(s) 2 ds < IIAolloo kj(s) ~ ds 

1 - I  J=Po 

( n - - 1  (2  -- O'j(S) ~ 
-< IIA~ 1 exp 2 E .  In -~-~ a - ~ ]  ] ds 

3 =Po 
1 n-1 

<- IIA~ f_lexp(e 2 -'~(s)) 
3 =Po 

<_ llAolI= f_llexp(-2 F n+l+  ̀a(r) dT) ds 
J2po+2 

f2po+2 \ ~ /*2n \ 
_< 211Ao[12exp(2]o a(r)dr)exp(-2]o a(r)dr). 

Isr. J. Math. 

We introduce 

5.2 THE STUDY OF THE DECREASE OF THE ENERGY OF WEAK SOLUTIONS. We 
prove (1.18). Fix p _> 2 and consider 

1 ~1/2 
Vs �9 (O, Tpl), Ao(s) = , (slnl(s_t)ln2(s_l) " * ~ lnp_ ]. ( s -  1) (lnp ( s -  1)) 2 J 

and Ao(s) = 0 in ( -1 ,  0) (J (Tp 1, 1). We verify that Ao e L2(0, 1). We use several 

times the change of variables z = ins to get 

? f T~ ' ds 
Ao(s)2 ds = Slnl(s_l) ln2(s_l)...lnp_l(s-l)(lnp(S-1)) 2 1 J0 

- -  - -  flln ~-0r dz  
Tp Z lnl (z) ln2(z)- . ,  lnp_2(z)(lnp_l(Z)) 2 

fln ~ dz 1 
, (n )  7~ lnp(-Tp) 

f0 
2n 

8n := a(r) dr. 

The important thing that must be noted is that Po has a great effect on the 

estimate. We obtain: the bigger IIAollcr is, the bigger Po is. 
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Set ~ > 0 and define for n large enough 

c[ 

s ,  = 82 lnl(Sn)ln2(S,,).--lnp-l(Sn)(lnp(,.~n)) 2" 

We easily see that  

Ao(s,)  2~_S~ a s n ~ + ~ .  

Therefore, if we choose for example a := �88 for n large enough we have 

2 + a , _ l ( s )  
Vs E (O,s,~), Ao(s) >_ Ao(s,) >_ S,-2(s)  + 2 ' 

and so 

Therefore 

Vs e (0 ,s . ) ,  IA.(s)l = A o ( s )  - S.-l(s). 

f /o /o" E(2n)  = A,(s)  2 ds >__ A,(s)  2 ds = (Ao(s) - S , - l ( s ) )  2 ds 
1 

~ ~oS" ~Ao(s)2 - Sn_l(S)2 ds 

1 1 ~ 1 1 
~ lnp(~;1) ( Sn + a(O))2s,~ ~ 2 lnp(s~ 1) as n --+ § 

Thus, we obtain that  for n large enough, 

1 1 1 
E(2n) > ~ lnp(f:'* ~(T) dT)> 2, -- -- lnp_l ( f  o a(~') dr)" 

At last we show that the energy of weak solutions goes to zero at infinity. 

5 .3  STRONG STABILITY FOR WEAK SOLUTIONS. There is a way to prove that  

weak solutions go to zero which avoid any computation. Given (u~ 1) E 
V • L2(0, 1) and so E ( -1 ,  1), it is sufficient to prove that the sequence (An(so)), 
goes to zero when n goes to infinity. For proving this, we consider a new time- 

dependent problem; the advantage of this method is that it gives an estimate of 

the decrease of (An(so))n. Define b: R+ -+ R+ a nonincreasing function of class 

C 1 such that  for all n C N, ~(2n + 1 + s) = a(2n + 1 + So) on (so - 5, So + 5) 

where 5 > 0 is small enough such that ( s o - 5 ,  S o + 5 )  C ( -1 ,1 ) .  Next de- 

fine ~: R --+ R an odd increasing function of class C 1 such that  ~(v) = g(v) on 

(-31Ao(so)t , 31Ao(so)l ) and ~ has a linear growth on (31Ao(so)l, +c~). Finally, 
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define (rio, ?~1) such that the corresponding function Ao is constant and equal to 

Ao(so) on ( -1 ,  1), and consider the solution fi of the following problem: 

(5.3) { u" - uxx = 0 in (0, 1) x R + ,  

t )  : 0 o n  

fi~(1,t) +5( t )~( f i ' (1 , t ) )  = 0 on R + ,  
U(0) = ?~0, ~1(0 ) : ?~1. 

Since Hyp. 3 is satisfied, we deduce from Theorem 1 that  the energy of fi (which 

we denote E,~) goes to zero. Then we easily deduce from (4.1) and from our 

definitions of ~ and ~ that 

: fSo+5 
26A,~(So) 2 A,(s)  2 ds < Ea(2n). 

J So-- 5 

Hence An(so) --+ 0 as n -+ +oo. | 

Note that  we never used the specific form of the funct iong:  this result of 
strong stability holds true if g is an increasing odd function of class C 1 on a 
neighborhood of zero, and no growth condition at infinity is required. 
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